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ABSTRACT: Designing proteins that can switch between active (ON) and inactive OFF ON

(OFF) conformations in response to signals such as ligand binding and incident light o °

has been a tantalizing endeavor in protein engineering for over a decade. While such ‘ '

designs have yielded novel biosensors, therapeutic agents, and smart biomaterials, the 0 o

response times (times for switching ON and OFF) of many switches have been too
slow to be of practical use. Among the defining properties of such switches, the
kinetics of switching has been the most challenging to optimize. This is largely due to
the difficulty of characterizing the structures of transient states, which are required for
manipulating the height of the effective free energy barrier between the ON and OFF
states. We share our perspective of the most promising new experimental and
computational strategies over the past several years for tackling this next frontier for
designing switchable proteins.

B INTRODUCTION (represented by OFF and ON states with the latter binding
the target ligand; Figure 1A). Some of the basic properties of
the switch, for example, signal-to-noise (turn-on/turn-off ratio)
and limit of detection, can be optimized by adjusting the
relative thermodynamic stabilities of OFF and ON con-
formations and the ligand binding affinity (Kj) of the ON
state, respectively (Figure 1A). Because the structures of OFF
and ON states are typically known, these goals can be achieved
by using well-established experimental and theoretical
approaches. The response time (given by [koy + kope] ') is
proportional to the height of the transition state ensemble
(TSE) between OFF and ON. Accelerating the response time
can be accomplished by introducing interactions that stabilize
the TSE but not the ground states (Figure 1B) or, more
commonly, by deleting native interactions that are present in
the ground states but absent in the TSE (Figure 1C). In either
case the TSE must be characterized by experimental and/or
computational means.

Here, we examine recent advances in tackling what we
regard as the next frontier in the design of switchable proteins:
the rational tuning of kinetics (i.e., turn-on and turn-off rates).
Oftentimes this means making a switch cycle between ON and
OFF sites more rapidly, so that it can react to conditions that

Protein conformational switches—proteins that adopt either
active (ON) or inactive (OFF) conformations in response to
signals such as ligand binding and incident light—have been
exploited as the core machinery behind novel biosensors,
therapeutic agents, and “smart” biomaterials."> The funda-
mental characteristics of a switch include its signal-to-noise
ratio (the extent to which the switch converts between ON and
OFF states), sensitivity (what levels of effector are required for
activation), and response time (the time required for the
switch to turn on and off). Signal-to-noise in biological
switches can be a complex phenomenon that is sometimes
modulated by agonists/antagonists that induce partial or
alternate ON/OFF states, and improving signal-to-noise is an
active subfield of its own in switch design. The response time
has proven to be even more challenging to optimize. Most
design strategies focus on stable states, specifically, the ON and
OFF conformations. Switching mechanisms can consist of
introducing a second stable state in a monomeric protein,
creating new protein—protein or protein—ligand binding
interfaces, and fusing protein domains such that they achieve
input—output communication. These efforts are typically
guided by structures of existing proteins or, more recently,
by principles of de novo design.”* Either way, they seek to

define the structures and optimize the activities of the stable Received: May 7, 2021 AL B
ON/OFF states of the protein. In general, it is left to chance Revised:  July S, 2021 "
that the stable states interconvert with reasonable rates. Published: July 29, 2021 &

The above scenario is illustrated by the free energy diagrams
of Figure 1 by using the example of a protein biosensor into
which two stable conformations have been engineered
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Figure 1. Manipulating barrier heights to accelerate switching rates. (A) Free energy diagram of a protein biosensor with stable OFF and ON
states, showing the transition path between them (red). Optimizing the equilibrium properties of the switch (turn-on/turn-off ratio, limit of
detection) can be achieved by introducing mutations that shift the relative thermodynamic stabilities of OFF and ON conformations and alter the
affinity of the ON state for the target ligand. (B) As in a classic enzyme mechanism, conformational switching can be accelerated by stabilizing the
TSE. (C) In practice, it is often more tractable to lower the TSE barrier by destabilizing the ON and OFF folds by introducing mutations that
delete interactions that are present in the stable states and absent in the TSE.

change over a wide range of time scales. In other cases, the goal
is to make the switch respond more slowly. For instance,
decreasing the turn-off rate is useful for enhancing the
sensitivity of biosensors because it enables the ON signal to
accumulate and for activating optogenetic tools because it
allows for a durable biological response that persists well after
light is removed, with reduction of photodamage and
photobleaching. For the purpose of this review we assume
that faster kinetics/lower barrier heights are intended, although
the same principles apply if one desires the opposite effect. The
main goal is to be able to optimize response times to match
that of a given biological process or practical application.

This frontier is a particularly challenging one, requiring the
analysis of transient states that experiments typically cannot
capture. While these transient states are ideally generated as
part of complete, atomically detailed pathways of the switching
process from molecular dynamics simulations, such simulations
have not been feasible due to the long time scales of switching
processes (>milliseconds). Of particular interest is therefore
the synergistic use of experimental techniques and computa-
tional strategies that can enable the generation of detailed
structures of transient states for the design of more responsive
switchable proteins. We also comment on promising future
directions.

We define a protein conformational switch as one in which
input and output functionalities are integrated into a single
molecule, often by means of fusing receptor and reporter
domains in such a way as to facilitate allosteric, interdomain
conformational changes. Switch designs can be classified into
three broad categories. The first uses an input domain that has
naturally evolved the ability to switch between two stable
conformations in response to a stimulus. In the second design,
the input domain is an existing protein that has but a single
fold, with conformational change being achieved via a folding/
unfolding reaction that is linked to ligand binding. The third
category involves similar mechanisms but employs de novo
design principles to generate sequences and structures that
may not have existed previously. In each case, the designer is
faced with the challenge of converting the binding interaction
to an observable signal by means of coupling the input
response to an output response. Below we discuss the kinetic
barriers that are present in some examples of each category and
the experimental approaches that have been used to identify
and modulate these barriers.
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B EXPERIMENTAL APPROACHES FOR
CHARACTERIZING TRANSITION STATES

Central to both experimental and computational approaches
for tuning rates is to first identify and characterize TSEs
between switch conformations. Depending on the type of
switch, as discussed below, these transitions can vary in extent
from whole-molecule folding/unfolding to rigid-body domain
movement to localized structural rearrangements. The
challenge facing experimental methods is to observe sparsely
populated states that approximate the relevant TSEs. A protein
engineering method known as ¢-value analysis® has been used
to map the TSEs of global folding/unfolding. This technique
entails introducing a point mutation into a protein and
measuring the extent to which it changes the equilibrium
constant between native and unfolded states versus the rates of
folding and/or unfolding. ¢-analysis has been applied to many
proteins, and some guiding principles have emerged.6 NMR-
and MS-based methods have been employed to probe more
subtle conformational changes, often providing per-residue
resolution and rates of interconversion. Recent examples
include using ZZ-exchange NMR spectroscopy to measure
site-specific folding rates of protein L9,” amide hydrogen/
deuterium exchange to characterize conformational dynamics
of dopamine® and XylE membrane-bound transporters,” and
NMR relaxation dispersion to uncover hidden states and their
rates of interconversion in glycotransferase fold switching'’
and dihydrofolate reductase enzymatic function.''

B BINDING-INDUCED FOLDING SWITCHES

All native proteins can be made to unfold, and many proteins
(including some that are disordered) recognize ligands with
high affinity and specificity when they are folded. These
features make binding-induced folding a generalizable platform
for biosensor engineering. One such example is the alternate
frame folding (AFF) design, which was used to convert the
small calcium binding protein calbindin Dy, into the
fluorescent calcium sensor, calbindin-AFFE.'> The AFF
modification entailed duplicating the N-terminal EF-hand of
calbindin (that contained a calcium-binding residue; cyan in
Figure 2A) and fusing it to the protein’s C-terminus
(magenta). Joining the two polypeptides with a linker long
enough to span the N-to-C distance of calbindin allowed
calbindin-AFF to switch between two folding “frames”, one of
which corresponded to the original amino acid sequence (WT
frame) and the other to that of a circular permutant (CP

https://doi.org/10.1021/acs.jpcb.1c04082
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Figure 2. Protein conformational switches and their response times.
(A) The calbindin-AFF construct (PDB ID for calbindin Dg: 3ICB)
switches via Ca?*-driven unfolding/folding of two duplicate EF-hands
(cyan and magenta) and their dissociation/docking with a shared
region (gray). (B) The GCaMP calcium sensor (PDB ID: 3EK4)
entails Ca**-induced binding of CaM (cyan) to the RS20 peptide
(magenta), which protects the GFP (gray) chromophore from solvent
and turns on fluorescence. (C) The LOVTRAP optogenetic construct
(PDB ID: SEFW) involves light-triggered dissociation of the Ja helix
(magenta) from LOV2 (gray), resulting in dissociation of Zdark
(cyan). (D) The lucCage biosensor (PDB ID: 7CBC) is composed of
a cage (gray) and a latch (cyan), to which an analyte recognition
domain (magenta) has been fused. Binding of the analyte together
with a key (which resembles the latch; not shown) causes the latch to
dissociate and expose a sequence in the latch that complements and
activates a reporter enzyme. (E) The SARS-CoV-2 spike protein
(PDB ID: 6VXX) involves opening of the receptor binding domain
(cyan) from the core domain (gray), as gated by a glycan (magenta)
attached to the N343 residue.

frame). The duplicate segments extend from the C-terminus
and N-terminus of the WT and CP frames, respectively, as
disordered peptides. Binding of calcium to one of the duplicate
EF-hands induces it to fold and dock against the shared region
of calbindin-AFF (gray), displacing and unfolding its counter-
part. The switch was driven in either direction by mutating a
calcium-binding residue in one or the other duplicate EF-hand,
and the conformational change was reported by strategic
placement of donor and quencher fluorophores. The turn-on
and turn-off half times were in the 1—-10 s range.

For AFF and other binding-induced folding switch designs,
it is reasonable to anticipate that ON/OFF switching times
may be accelerated by lowering the barriers to folding and
unfolding. Typically, this is done by introducing mutations that
raise the free energy of native or denatured states relative to
that of the TSE by using the ¢-value analysis approach.
Nevertheless, identifying rate-enhancing mutations by exper-
imental means remains largely a hit-or-miss prospect. More-
over, in the case of calbindin-AFF, the rate-limiting step
appears to involve partial unfolding rather than global
unfolding,13 the former of which being more challenging to
characterize by traditional ¢@-value analysis. Computational
methods were invaluable to improving the response rate of
calbindin-AFF (vide infra).
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B BIOSENSORS WITH PREEXISTING SWITCHABLE
INPUT DOMAINS

In contrast to calbindin-AFF, the GCaMP family of genetically
encoded calcium indicators (GECIs) employ an input domain
(calmodulin, or CaM) that naturally evolved to undergo a
dramatic conformational change upon calcium binding. In its
calcium-free state, CaM’s N-terminal EF-hand, C-terminal EF-
hand, and connecting polypeptide adopt a compact, closed
conformation. Binding of Ca®" to the EF-hands induces a shift
to an extended state that exposes the connecting helix for
binding to many protein domains such as the RS20 peptide
from myosin light chain kinase. To transduce this change to a
fluorescent output, GCaMPs fuse RS20 (magenta in Figure
2B) and CaM (cyan) to the N- and C-termini of GFP (gray)
that has been circularly permuted near its chromophore.'* The
interaction between CaM and RS20 protects the chromophore
from solvent access, resulting in fluorescent turn-on.

GCaMPs and other GECIs have revolutionized studies of
calcium signaling in vivo. To do so, it was necessary to shorten
their response times to match those of rapid fluctuations in
cellular calcium concentration (1—100 ms). The GCaMP
response time is limited by its turn-off rate, which is
determined not only by calcium release but also by the
extended-to-closed conformational change of CaM that
follows. Chemical intuition predicts that mutating residues in
the CaM EF-hands (that weaken calcium binding) as well in
RS20 (that weaken peptide binding) will accelerate the turn-off
rate. Both predictions proved correct; turn-off rates were
increased from 2.48 to 4.68 s™.,'° 5.8 to 21 s71,'® and 4.62 to
99 s.,'7 in various GCaMP GECIs. These results illustrate a
central point of this review. Accelerated turn-off rates tended
to correlate with higher K; of the sensors, especially for the EF-
hand mutants. This relationship arises because any mutation
that weakens ligand binding affinity (RS20 can be considered a
second ligand in the GCaMP switch) will likely raise the free
energy of the ON state relative to that of the OFF state, thus
changing the sensor’s equilibrium properties (e.g., sensitivity).
If one wishes to optimize response time without perturbing
affinity, the mutation(s) should alter the free energies of the
ground states relative to the TSE and not with respect to each
other (Figure 1B). Rational selection of these mutation sites
requires knowledge of the allosteric mechanism gained through
experimental or computational means.

The class of photoactivatable proteins exemplified by the
second light-oxygen-voltage-sensing domain 2 (LOV2) from
Avena sativa phototropin 1 is another example of a bioswitch
built from pre-existing allosteric domains. Blue light absorption
triggers the ON state, in which a covalent bond forms between
the flavin mononucleotide (FMN) chromophore and a
conserved cysteine."® Cys adduct formation is coupled with
the rotation of a conserved Gln with concomitant unfolding
and dissociation of the N-terminal helix (A’a) and the C-
terminal helix (Ja; magenta in Figure 2C) from the LOV2 core
domain (gray).'"””* When the blue light is removed, the
photoadduct spontaneously breaks and LOV2 returns to its
OFF state, with A’ar and Jo folding and rebinding to the core
domain. Covalent changes to the FMN chromophore occur on
the microsecond time scale, and Ja unfolding proceeds on the
millisecond time scale. The ON to OFF reversion, however,
requires minutes to hours, making it the rate-limiting step in
the photocycle. Random mutagenesis of 7 of the ~20 amino
acid sites that comprise the FMN binding pocket identified

https://doi.org/10.1021/acs.jpcb.1c04082
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Figure 3. Weighted ensemble simulations of the opening of the SARS-CoV-2 spike protein. (A) Schematic of the weighted ensemble strategy.
Trajectories (blue circles) are initiated from state A with equal statistical weights, propagating the dynamics in parallel (blue arrows) for fixed time
intervals and applying a resampling procedure after each time interval to ensure equal coverage of configurational space (in this illustration, two
trajectories per bin along a two-dimensional progress). The resampling procedure involves replicating trajectories that make transitions to less
visited bins and occasionally terminating trajectories that have not made such transitions while rigorously tracking the trajectory weights (indicated
by the sizes of the circles). The process of running dynamics and resampling is repeated until a desired number of trajectories have arrived in the
target state B. (B) The SARS-CoV-2 spike activation process simulated using the WE strategy. The simulations involved the head region of the
spike protein (gray) with full glycosylation (blue) and captured hundreds of switching pathways from the “down” state of the receptor binding
domain (cyan) to the “up” and “open” states. Based on these pathways, the glycan attached to the N343 residue (magenta) functions as a gate that

controls the switching process.

mutants that exhibit reversion rates from 21-fold faster to 78-
fold slower than those of WT LOV2.”' The mechanism(s) of
rate enhancement remain unclear but may involve destabiliza-
tion of the Cys-FMN adduct.

An example of LOV2 used as in input domain for a
functional switch is the LOV2 Trap and Release of Protein
(LOVTRAP) system.”” LOVTRAP is a two-component switch
consisting of LOV2 and Zdark, a 38-residue peptide that was
evolved by mRNA display to bind the dark conformation of
LOV2. The crystal structure of the dark-state complex revealed
that Zdark (cyan in Figure 2C) binds to the LOV2 core
domain as well as the tip of Ja. Light-induced unfolding of Ja
causes Zdark to dissociate in under a second. As anticipated
from earlier LOV2 studies, the dark-to-light conformational
change limits the overall response time of LOVTRAP.
Reassociation half-times were tuned from 10-fold faster to
26-fold slower (covering arange of 2 s to 9 min) relative to the
WT LOV2 construct” by mutating two of the FMN-
contacting residues previously described.”"””> LOVTRAP has
been used to introduce photocontrol to protein subcellular
localization and protein—protein interactions. A protein of
interest (POI) is fused to Zdark (or LOV2), and LOV2 (or
Zdark) is sequestered to an organelle or anchored to a
membrane. Light irradiation causes the POI to dissociate and
diffuse to its preferred cellular location and interact with its
natural binding partner.24 In addition to its use in the modular,
two-component Zdark system, reversible Ja unfolding has been
employed to regulate functions of specific proteins by directly
fusing LOV2 to nanobodies,”” Src kinase,” Rac,”® CamKII,”’
and others. A guide for how to engineer LOV2-based
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photoswitches, along with tables of the characterized kinetic
mutants and potential applications, has been published
recently.””

B DE NOVO DESIGNED SWITCHES

While building complex allosteric pathways such as those
encoded in the CaM and LOV2 sequences is presently out of
reach, de novo design of novel protein scaffolds and binding
interfaces has reached adolescence, if not maturity. De novo
methods thus establish a route for creating binding domains
that can be customized to recognize ligands of choice as well as
new mechanisms for transducing input to output signals via
coupled binding events. The latching orthogonal cage—key
(LOCKR) family of protein switches, developed by Baker and
colleagues, is composed of a six-helix bundle with the first five
helices designated as the “cage” (gray in Figure 2D) and the
sixth as the “latch” (cyan).”” The “key” is an exogenously
added helix that resembles the latch and competes with the
latch for docking to the cage. The latch embeds a peptide that
can bind a protein partner but is made cryptic by burial in the
latch—cage interface. The switch is turned on by addition of
the key, which displaces the latch and exposes the peptide for
binding its partner. The identity of the peptide establishes the
output signal; existing examples are a Bim sequence
(programmed cell death) and a degron peptide (protein
degradation).

LOCKR switches are activated by a single binding event but
are capable of multiple output functionalities. The related
lucCage design reverses this relationship to enable biosensors
that bind different targets and produce a dedicated output

https://doi.org/10.1021/acs.jpcb.1c04082
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signal (e.g,, luminescence).’® To do so, the latch was modified
to contain a domain at its C-terminus (magenta in Figure 2D)
that was de novo engineered to possess shared affinity for the
cage as well as to any one of a number of analytes to be
detected. The activating peptide, also in the latch, was changed
to a split luciferase fragment. The complementary luciferase
fragment was fused to the key. The combination of analyte
binding to the latch and key binding to the cage displaces the
latch and allows the luciferase fragments to complement,
turning on bioluminescence.

LOCKR and lucCage represent combinations of folds and
stabilizing interactions that do not exist in nature. Moreover,
the Rosetta-based computational methods used to design them
only target the final, lowest-energy structure. They do not
consider partially folded structures, pathways, or barriers. A
fundamental question thus arises: how do switching rates of de
novo designed proteins compare with rates of folding/
unfolding and conformational changes of natural proteins?
LOCKR and lucCage exhibit turn-on and turn-off times in the
minutes-to-hours scale.”” These times are similar to those of
the protein fragment exchange (FREX)-based biosensors.’'
Introduced in 2014, FREX sensors established the analogous
unlocking/exchange mechanism to generate output (FRET)
but were made from the human fibronectin 3 binding scaffold.
This limited comparison suggests that de novo switches
already operate with rates in the biological regime even though
their designs are based solely on thermodynamic and not
kinetic principles. Baker speculates that the folding landscapes
of de novo designed proteins tend to be smooth funnels,
devoid of large energy barriers, because the design process
successfully eliminates competing low-energy states with very
different structures.’> Nevertheless, there is always room for
improvement, and response times of switches based on de
novo designs and natural proteins alike can be optimized by
using the computational approaches described below.

B COMPUTATIONAL APPROACHES TO TUNING
RATES

To our knowledge, only one computational study has reported
the rational enhancement of kinetics for a protein conforma-
tional switch.*® The goal of this study was to speed up the slow
response time (hundreds of milliseconds) of the engineered
protein-based calcium sensor, calbindin-AFF (Figure 2A), by
at least an order of magnitude to detect fast physiological Ca**
fluctuations. The computational strategy involved (i) a
minimal, residue-level protein model (one bead per residue),
(ii) a Go-type potential®* that was parametrized to reproduce
the thermodynamic stability of each switch component, and
(iii) the weighted ensemble (WE) path sampling strategy,35
which can be orders of magnitude more eflicient than standard
simulations in generating pathways and rate constants for rare
events (e.g, protein folding and protein binding) without
introducing any external bias in the dynamics or altering the
free energy landscape (Figure 3A).*° The only prerequisites for
this strategy are the structure and experimental folding free
energy of the nonpermutant switch component. Despite the
simplicity of the simulation model, this strategy identified
previously untested mutations that decreased response time by
as much as 32-fold (590 to 19 ms) via preferential
destabilization of the ground states relative to the transition
path ensemble (TPE), which is defined as all transient states in
productive pathways, beginning where the trajectory last exited
the initial state and ending where the trajectory first entered
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the target state. In particular, we focused on large, hydrophobic
residues that form the most pairwise residue contacts in the
initial ground state relative to the TPE-prime candidates for
“underpacking” mutations that destabilize the ground state by
removing hydrophobic interactions. Importantly, a negative
control mutation was correctly predicted to have little effect on
the kinetics despite being located near the other mutations.
Furthermore, this study demonstrated that the efficiency of the
WE strategy relative to standard simulations in estimating rate
constants increases exponentially with the effective free energy
barrier and can therefore be applied to switches of a similar size
(less than a few hundred amino acids) with even slower
response times (<100 s).33

Although the WE strategy has not been used with atomistic
models to rationally manipulate the kinetics for an engineered
protein-based conformational switch, the strategy has enabled
the generation of rate constants and atomistic pathways for
complex biological processes such as protein folding,”’
protein—protein binding,”® and protein—ligand unbinding.””
Furthermore, encouraging WE results have been obtained for
the activation process of a particularly large natural switchable
protein: the glycosylated SARS-CoV-2 spike protein,*’ which
must open before binding the human ACE2 receptor to fuse
and infect the human host cell. The system for this WE
simulation consisted of the head region (residues 16—1140),
explicit water molecules, and a physiological ionic strength
(150 mM NaCl), totaling almost half a million atoms.

As part of an international team effort that was awarded the
2020 Gordon Bell Special Prize for HPC-Based COVID-19
Research, WE simulations yielded atomically detailed pathways
for the opening of the spike receptor binding domain (cyan in
Figure 2E) from glycan-shielded state (down) to exposed (up)
and open states (Figure 3B).*" The conformations of the open
state align closely with the cryo-EM structure of the ACE2-
bound spike protein.*” While standard MD simulations would
require hundreds of years to capture a single, atomically
detailed pathway for the opening of the spike—a seconds time
scale process'’—the WE simulations generated hundreds of
pathways for spike opening in 45 days by using 100 NVIDIA
V100 GPUs in parallel on the TACC Longhorn super-
computer. These pathways reveal that a glycan attached to the
N343 residue (magenta in Figure 2E) functions as a gate that
controls the opening (switching) process of the spike protein.
The functional importance of this glycan has been validated by
biolayer interferometry experiments, which revealed a 56%
reduction in binding to the ACE2 receptor when N343 is
mutated to an alanine. Furthermore, the large-scale collective
motions of the spike-opening process are consistent with those
observed in two-dimensional cryogenic electron microscopy
images of the spike protein.** The WE simulations set a new
high-water mark for ensemble simulations of atomistic
pathways, capturing seconds time scale motions for a massive
protein system.

In another simulation study, which was completed on the
Folding@home distributing computing resource, adaptive
sampling_ also captured the open conformations of the spike
protein, ™ including the ACE2-bound spike conformation that
was sampled by the WE simulations.”* Like the WE strategy,
adaptive sampling is an enhanced sampling strategy that
involves iteratively splitting (or replicating) trajectories that
have progressed closer to the target state. Together, these
results demonstrate the power of “splitting” strategies in
sampling switching processes that are beyond the milliseconds
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time scale and the value of applying such strategies with
atomistic models—even when the estimation of rate constants
remains a challenge. In contrast to many engineered protein
conformational switches, it is not of interest to enhance the
switch response time of the spike protein. Rather, the ultimate
goal of these studies is to inform strategies for locking the
protein in the OFF state, for example, by targeting structures of
stable or transient states with small molecules as potential drug
inhibitors of COVID-19.

B FUTURE AREAS OF IMPROVEMENT FOR
COMPUTATIONAL STRATEGIES

Promising avenues for improving the effectiveness of computa-
tional strategies in tuning the kinetics of protein conforma-
tional switches include (i) more accurate residue-level, coarse-
grained simulation models (force fields) that can offer orders
of magnitude speedup over all-atom force fields and (ii) more
efficient enhanced sampling strategies to enable faster
predictions of mutations that can enhance switching kinetics.
Given the slow response times of many engineered protein-
based switches, enhanced sampling strategies are essential for
capturing switching pathways, even with the use of coarse-
grained force fields.

An ongoing challenge of coarse-grained force fields is the
ability to simulate protein folding transitions with realistic
kinetics. Go-type potentials®* on their own have been useful
from the perspective of protein engineering in terms of (i)
their abilities to reproduce experimental stabilities of individual
switch components by optimizing the primary adjustable
parameter (the well-depth ¢) and (ii) their abilities to capture
the cooperativity of protein folding, yielding fragment
stabilities that are consistent with experimental data.’
However, such models yield artificially accelerated dynamics
due to the neglect of stabilizing non-native interactions** and
may not capture non-native, metastable intermediates. On the
other hand, the latest generation of coarse-grained force fields
that include non-native interactions such as the MARTINT 3%/
and SIRAH 2.0 force fields*® have not yet matured to the point
of being adequate on their own for simulating the folding
transitions that can occur for certain protein conformational
switches, requiring restraints to maintain secondary structures.
To combine the best of both worlds, one might use a hybrid of
a Go-type potential and coarse-grained force field such as
MARTINI 3 or SIRAH 2.0. In the very least, electrostatic
interactions—Dboth native and non-native—could be used with
Go-type potentials to provide a more realistic, rugged free
energy landscape for more quantitative modeling of the protein
switching process.

A major challenge of the WE strategy and many other
enhanced sampling strategies is the identification of a progress
coordinate for the process of interest (e.g., conformational
switching). Recent deep learning approaches identify potential
progress coordinates by encoding a high-dimensional set of
conformational and dynamical features from a training set of
trajectory data onto a low-dimensional representation of the
features; the progress coordinate can then be decoded to
obtain physically relevant details. Two such approaches are the
Convolutional Variational Autoencoder (CVAE) method®
and the Reweighted Autoencoded Variational Bayes for
Enhanced Sampling (RAVE) method.”® The CVAE method
has been applied to protein folding, differentiating between
various intermediates in the folding process of Fs-peptide,*’
and the RAVE method has been able to detect subtle loop
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fluctuations in the T4 lysozyme enzyme.’' Both of these
studies highlight the promise of such strategies for aiding the
enhanced sampling of large conformational transitions of
protein switches. In addition, such strategies could learn
effective progress coordinates more efficiently by using
complete pathways of the switching processes from WE
simulations as training data.*' These simulations could involve
coarse-grained models even if the end goal is to simulate with
all-atom models—as long as the coarse-grained simulations
have captured the relevant slow motions of the process. Once
an effective progress coordinate has been identified, an
adaptive binning strategy such as the Minimal Adaptive
Binning (MAB) strategy may be applied to automate the
placement of bins along the progress coordinate during a
simulation to more efficiently surmount “bottleneck” regions.>”

Finally, several strategies have been developed for more
efficient estimation of rate constants from simulations that
have not yet reached a steady state. These strategies include
the Rates from Event Duration (RED) scheme, which can
estimate rate constants with up to 50% greater efficiency than
the original scheme for WE simulations™ by incorporating the
probability distribution of sampled event durations (barrier
crossing times).>” Rate constants can also be estimated more
efficiently by constructing a history-augmented Markov state
model (haMSM) from completed simulations (e.g., weighted
ensemble, adaptive sampling, and standard simulations).54 In
contrast to a standard MSM, an haMSM does not require the
use of a long lag time (e.g.,, ~100 ns) and can therefore provide
pathway and kinetics observables for time scales that are both
shorter and longer than the lag time.”> To further accelerate
convergence to a steady state, an haMSM could be constructed
periodically during a WE simulation to iteratively reweight
trajectories.”> The combination of this on-the-fly reweighting
with WE simulation could enable the estimation of rate
constants for processes as slow as the seconds time scale,
including the switching process of the SARS-CoV-2 spike.**

Computational strategies for tuning rates might be applied
in two stages. In the first stage, a large set of switch constructs
could be virtually screened by using coarse-grained simu-
lations, qualitatively ranking the constructs based on the extent
of switching (signal-to-noise) and kinetics (response time). In
the second stage, the top one to three switch constructs from
the first stage could be characterized by using all-atom
simulations to quantitatively identify candidate residues for
mutation to improve the response time of the switch. As
mentioned above, both stages benefit greatly from the
application of enhanced sampling strategies that provide
rigorous kinetics (e.g.,, the WE strategy). To further improve
on the efficiency of the computational strategy, deep learning/
artificial intelligence strategies could be used to identify more
effective progress coordinates for the enhanced sampling and
to aid in the detailed analysis of how the protein conforma-
tional transitions can occur.

B INTEGRATING EXPERIMENTAL AND

COMPUTATIONAL APPROACHES

The power of synergistically combining experimental and
computational strategies has been demonstrated for the
engineered calbindin-AFF calcium sensor’>—the only study
(to our knowledge) to date that has been successful in
rationally enhancing the response time of a protein switch.
While time-resolved experiments can measure rate constants
for the overall switching process and the thermodynamic
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stabilities of each switch component (i.e., folding free
energies), molecular simulations can provide complete path-
ways for the switching process, including structures of transient
states, which are essential for predicting mutations that could
enhance the kinetics. The only prerequisites for these
simulations are the structures of the individual switch
components and the experimental folding free energy of each
component. The latter is used to parametrize the simulation
model to yield the expected relative stabilities of the stable
states. In the case of a AFF switch construct, only the structure
and folding free energy of the parent protein were required for
parametrization of the model. The other stable state is a
circular permutant of the same protein which can be modeled
based on the structure of the parent protein. To further reduce
the amount of guesswork and effort required of experiments,
these simulations could be used to virtually screen candidate
mutations for enhanced response times. Importantly, both
thermodynamic and kinetics experiments provide validation of
the simulations and help inform the level of detail that is
required of the simulation models.

B CONCLUDING THOUGHTS

In closing, experimental and computational strategies have
matured to the point where they can be synergistically
combined to reduce the amount of guesswork required to
engineer protein conformational switches with desired
response times. In our own studies, experimentally determined
protein structures and thermodynamic stabilities played critical
roles in establishing computational simulations and calibrating
them. Conversely, theoretical results inform experiments. For
example, de novo approaches alone are seldom sufficient to
generate functioning switches. Instead, they typically define
structures and amino acid sequences that serve as the starting
points for directed or random mutagenesis and library
screening experiments. While the prediction of switch response
times on time scales beyond milliseconds remain a challenge
for atomistic simulations, such simulations of the seconds time
scale switching process of the massive SARS-CoV-2 spike
protein have demonstrated that the generation of complete
pathways for the switching process is in its own right highly
valuable, providing direct views of how the protein switches
from the OFF to the ON state, including the structures of
transient states for manipulating the switching kinetics. Given
the ever-ongoing advances in computer software and hardware,
the future is bright for quantitative predictions of switching
kinetics.
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